Supplementary Exercises for Chapter 2

Exercise 2.1 Solve for the matrix X if:
a. $P X Q=R$;
b. $X P=S$;
where $P=\left[\begin{array}{rr}1 & 0 \\ 2 & -1 \\ 0 & 3\end{array}\right], Q=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 0 & 3\end{array}\right]$,
$R=\left[\begin{array}{rrr}-1 & 1 & -4 \\ -4 & 0 & -6 \\ 6 & 6 & -6\end{array}\right], S=\left[\begin{array}{ll}1 & 6 \\ 3 & 1\end{array}\right]$

Exercise 2.2 Consider

$$
p(X)=X^{3}-5 X^{2}+11 X-4 I .
$$

a. If $p(U)=\left[\begin{array}{rr}1 & 3 \\ -1 & 0\end{array}\right]$ compute $p\left(U^{T}\right)$.
b. If $p(U)=0$ where U is $n \times n$, find U^{-1} in terms of U.

Exercise 2.3 Show that, if a (possibly nonhomogeneous) system of equations is consistent and has more variables than equations, then it must have infinitely many solutions. [Hint: Use Theorem 2.2.2 and Theorem 1.3.1.]

Exercise 2.4 Assume that a system $A \mathbf{x}=\mathbf{b}$ of linear equations has at least two distinct solutions \mathbf{y} and \mathbf{z}.
a. Show that $\mathbf{x}_{k}=\mathbf{y}+k(\mathbf{y}-\mathbf{z})$ is a solution for every k.
b. Show that $\mathbf{x}_{k}=\mathbf{x}_{m}$ implies $k=m$. [Hint: See Example 2.1.7.]
c. Deduce that $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

Exercise 2.5

a. Let A be a 3×3 matrix with all entries on and below the main diagonal zero. Show that $A^{3}=0$.
b. Generalize to the $n \times n$ case and prove your answer.

Exercise 2.6 Let $I_{p q}$ denote the $n \times n$ matrix with (p, q) entry equal to 1 and all other entries 0 . Show that:
a. $I_{n}=I_{11}+I_{22}+\cdots+I_{n n}$.
b. $I_{p q} I_{r s}=\left\{\begin{array}{cl}I_{p s} & \text { if } q=r \\ 0 & \text { if } q \neq r\end{array}\right.$.
c. If $A=\left[a_{i j}\right]$ is $n \times n$, then $A=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} I_{i j}$.
d. If $A=\left[a_{i j}\right]$, then $I_{p q} A I_{r s}=a_{q r} I_{p s}$ for all p, q, r, and s.

Exercise 2.7 A matrix of the form $a I_{n}$, where a is a number, is called an $n \times n$ scalar matrix.
a. Show that each $n \times n$ scalar matrix commutes with every $n \times n$ matrix.
b. Show that A is a scalar matrix if it commutes with every $n \times n$ matrix. [Hint: See part (d.) of Exercise 2.6.]

Exercise 2.8 Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, where A, B, C, and D are all $n \times n$ and each commutes with all the others. If $M^{2}=0$, show that $(A+D)^{3}=0$. [Hint: First show that $A^{2}=-B C=D^{2}$ and that

$$
B(A+D)=0=C(A+D) .]
$$

Exercise 2.9 If A is 2×2, show that $A^{-1}=A^{T}$ if and only if $A=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ for some θ or $A=\left[\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$ for some θ.
[Hint: If $a^{2}+b^{2}=1$, then $a=\cos \theta, b=\sin \theta$ for some θ. Use

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi .]
$$

Exercise 2.10

a. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, show that $A^{2}=I$.
b. What is wrong with the following argument? If $A^{2}=I$, then $A^{2}-I=0$, so $(A-I)(A+I)=0$, whence $A=I$ or $A=-I$.

Exercise 2.11 Let E and F be elementary matrices obtained from the identity matrix by adding multiples of row k to rows p and q. If $k \neq p$ and $k \neq q$, show that $E F=F E$.
Exercise 2.12 If A is a 2×2 real matrix, $A^{2}=A$ and $A^{T}=A$, show that either A is one of $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, or $A=\left[\begin{array}{cc}a & b \\ b & 1-a\end{array}\right]$ where $a^{2}+b^{2}=a,-\frac{1}{2} \leq b \leq \frac{1}{2}$ and $b \neq 0$.

Exercise 2.13 Show that the following are equivalent for matrices P, Q :

1. P, Q, and $P+Q$ are all invertible and

$$
(P+Q)^{-1}=P^{-1}+Q^{-1}
$$

2. P is invertible and $Q=P G$ where $G^{2}+G+I=0$.
