Supplementary Exercises for Chapter 2

Exercise 2.1 Solve for the matrix *X* if:

a.
$$PXQ = R;$$

where $P = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 3 \end{bmatrix}, Q = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix},$
 $R = \begin{bmatrix} -1 & 1 & -4 \\ -4 & 0 & -6 \\ 6 & 6 & -6 \end{bmatrix}, S = \begin{bmatrix} 1 & 6 \\ 3 & 1 \end{bmatrix}$

Exercise 2.2 Consider

$$p(X) = X^3 - 5X^2 + 11X - 4I$$

a. If
$$p(U) = \begin{bmatrix} 1 & 3 \\ -1 & 0 \end{bmatrix}$$
 compute $p(U^T)$

b. If p(U) = 0 where U is $n \times n$, find U^{-1} in terms of U.

Exercise 2.3 Show that, if a (possibly nonhomogeneous) system of equations is consistent and has more variables than equations, then it must have infinitely many solutions. [*Hint*: Use Theorem 2.2.2 and Theorem 1.3.1.]

Exercise 2.4 Assume that a system $A\mathbf{x} = \mathbf{b}$ of linear equations has at least two distinct solutions \mathbf{y} and \mathbf{z} .

- a. Show that $\mathbf{x}_k = \mathbf{y} + k(\mathbf{y} \mathbf{z})$ is a solution for every *k*.
- b. Show that $\mathbf{x}_k = \mathbf{x}_m$ implies k = m. [*Hint*: See Example 2.1.7.]
- c. Deduce that $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.

Exercise 2.5

- a. Let *A* be a 3×3 matrix with all entries on and below the main diagonal zero. Show that $A^3 = 0$.
- b. Generalize to the $n \times n$ case and prove your answer.

Exercise 2.6 Let I_{pq} denote the $n \times n$ matrix with (p, q)-entry equal to 1 and all other entries 0. Show that:

- a. $I_n = I_{11} + I_{22} + \dots + I_{nn}$. b. $I_{pq}I_{rs} = \begin{cases} I_{ps} & \text{if } q = r \\ 0 & \text{if } q \neq r \end{cases}$.
- c. If $A = [a_{ij}]$ is $n \times n$, then $A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} I_{ij}$.
- d. If $A = [a_{ij}]$, then $I_{pq}AI_{rs} = a_{qr}I_{ps}$ for all p, q, r, and s.

Exercise 2.7 A matrix of the form aI_n , where *a* is a number, is called an $n \times n$ scalar matrix.

- a. Show that each $n \times n$ scalar matrix commutes with every $n \times n$ matrix.
- b. Show that A is a scalar matrix if it commutes with every $n \times n$ matrix. [*Hint*: See part (d.) of Exercise 2.6.]

Exercise 2.8 Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where *A*, *B*, *C*, and *D* are all $n \times n$ and each commutes with all the others. If $M^2 = 0$, show that $(A + D)^3 = 0$. [*Hint*: First show that $A^2 = -BC = D^2$ and that

$$B(A+D) = 0 = C(A+D).$$
]

Exercise 2.9 If *A* is 2 × 2, show that $A^{-1} = A^T$ if and only if $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ for some θ or $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$ for some θ .

[*Hint*: If $a^2 + b^2 = 1$, then $a = \cos \theta$, $b = \sin \theta$ for some θ . Use

$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi.]$$

Exercise 2.10

- a. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, show that $A^2 = I$.
- b. What is wrong with the following argument? If $A^2 = I$, then $A^2 I = 0$, so (A I)(A + I) = 0, whence A = I or A = -I.

Exercise 2.11 Let *E* and *F* be elementary matrices ob- **Exercise 2.13** Show that the following are equivalent tained from the identity matrix by adding multiples of row k to rows p and q. If $k \neq p$ and $k \neq q$, show that EF = FE.

Exercise 2.12 If A is a 2×2 real matrix, $A^2 = A$ and $A^T = A$, show that either A is one of $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ or } A = \begin{bmatrix} a & b \\ b & 1-a \end{bmatrix}$ where $a^2 + b^2 = a, -\frac{1}{2} \le b \le \frac{1}{2}$ and $b \ne 0$.

for matrices P, Q:

1. P, Q, and P + Q are all invertible and

$$(P+Q)^{-1} = P^{-1} + Q^{-1}$$

2. *P* is invertible and Q = PG where $G^2 + G + I = 0$.